Medium HH (1 liter) #### Step I 600 ml deionized H₂O 10 mg EDTA 0.5 g KH₂PO₄ 200 mg MgSO₄ · 7 H₂O 75 mg CaCl₂ · 2 H₂O 0.5 g NH₄Cl 1 g sodium acetate 0.1 g yeast extract 20 µg Vitamin B₁₂ 1 ml trace elements¹ 1 g Na pyruvate 1.63 g (10mM) bicine (Sigma) Autoclave liquid mixture (25 minutes) in dispensing jar containing a dispensing bell connected to the jar by sterile rubber tubing. ## Step II 2.5 g NaHCO₃ 2.5 g Na₂CO₃ 300 ml deionized H₂O Autoclave carbonate/bicarbonate as a dry powder in a 500-ml bottle. After cooling and when you ready to assemble the medium, dissolve the powders in the 300 ml of sterile water. #### Step III 0.6 g Na₂S · 9 H₂O 100 ml degassed (boiled) H₂O Wash crystals of Na₂S · 9 H₂O in distilled water, dry on a towel, and weigh out. Dissolve the washed crystals in boiling d-H₂O and autoclave immediately. ### Step IV After cooling, add dissolved carbonate/bicarbonate (Step II) and sulfide (Step III) mixtures to the sterile bell jar medium (Step I), adjust the pH to 9.0 and immediately dispense into 17-ml screw-cap tubes. Make sure the tubes are completely filled with medium (leaving as small an air bubble as possible) and tightly capped. The final medium may form a slight greyish-black precipitate. Let the medium "age" for at least two days before using. ¹ Trace elements (per liter of distilled water): | EDTA | 5.2 g | $Na_2MoO_4 \cdot 2H_2O$ | 188 mg | |--|--------|--------------------------------------|--------| | CoCl ₂ · 6 H ₂ O | 190 mg | NiCl ₂ ·6H ₂ O | 25 mg | | $MnCl_2 \cdot 4H_2O$ | 100 mg | $ZnCl_2$ | 70 mg | | FeCl ₂ ·4H ₂ O | 1.5 g | $VoSO_4 \cdot 2H_2O$ | 30 mg | | H_3BO_3 | 6 mg | Na_2WO_4 $^{\circ}2H_2O$ | 2 mg | | CuCl ₂ · 2H ₂ O | 17 mg | NaHSeO ₃ | 2 mg | Note to users: Any trace elements solution will likely work